Lecture 3
Weill start by defining the order of an element
Definition Let (G, \cdot) be a group and $k \in \mathbb{Z}$. The element $a^{k} \in G$ b defined by

$$
a^{k}= \begin{cases}\frac{a \cdot a_{0} \cdots a}{e^{k-t i m e s}}, & k>0 \\ \frac{a^{-1} \cdot a^{-1} \cdot \cdots a^{-1}}{k-t i m e s}, & k<0\end{cases}
$$

Exercise [Laws of exponents hold ie a group]. Let G be a group, $a \in G$ and $n, m \in \mathbb{Z}$. Prove that $a^{n} \cdot a^{m}=a^{n+m}$ and $\left(a^{n}\right)^{-1}=a^{-n}=\left(a^{-1}\right)^{n}$. We now make the following definition

Def:- [Order of an element]
Let G be a group and $a \in G$. The order of a, denoted by ord (a) is the smallest positive integer k such that $a^{k}=e$. If there is no much $k \in \mathbb{Z}$, then we say $\operatorname{ord}(a)=\infty$.
e.g. (1) Consider $U(12)=\{1,5,7,11\}$. Then $5^{2}=25 \equiv 1 \bmod (12)$ and 2 is the smallest positive integer with this property. So $\operatorname{ord}(5)=2$.
(2) Consider D_{4} and $H \in D_{4}$. Then H^{2} can be seen as

So, $\operatorname{ard}(H)=2$.
(3) In $\left(\mathbb{Z}_{1}+\right)$, any non-zero element has orcler ∞.

Examples coutimed

Permutation or Symmetric groups

Let's look at another important set of examples called the permutation or the symmetric groups, denoted by $S_{n}, \forall n \geq 1$. Even though, we can define S_{n} for every $n \geq 1$, here well only focus on S_{3} (the first interesting case) and will come back to their study ie depth later.
first a definition

Definition Let B be a non-empty set. A permutation of B a function from B to B which is a bijection, ie., it is both one to ore and onto.

Even though, the notion of permutation makes sense for an infinite set B, here well focus on the case when Bis finite so for convenience, we can take $B=\{1,2, \ldots, n\} \quad i$ if has n elements.

So if $B=\{1,2,3,4\}$, for instance, then are possible permutation of B could be the function $\alpha: B \rightarrow B$ given by $\alpha(1)=2, \alpha(2)=3, \alpha(3)=4$ and $\alpha(4)=1$ or a function β given by

$$
\begin{aligned}
& \beta(1)=3, \beta(2)=2, \beta(3)=4 \text { and } \\
& \beta(4)=1 .
\end{aligned}
$$

So you can see that there can be many permutations on a set.

The group S_{3}
Now let $B=\{1,2,3\}$ and let S_{3} denote the set of all permut-- ations on B. Then S_{3} is a group called the symmetric or permutation group on 3 letters.

So there are two questions:-

1) What is the group operatiour?
2) How many elements does S_{3} have and what are they?

To answer the first question, observe that $S_{3}{ }_{i}$ the set of functions from $B \rightarrow B$ and in we want S_{3} to be a group, so the operation must take two functions and return a shingle function. So there is an obvious operation on functions: composition of two functions. and this is the group operation on S_{3}.

So one can ask, how does this operation works on S_{3} ? For that well have answer the second question.

First let's see how many elements can S_{3} have: \rightarrow

If we have any bijection on $\{1,2,3\}$ then we know that the element I has a total of three choices to be mapped to ; 1,2 or 3. Once 1 is mapped to an element, 2 has now two choices only as the function must be oure-to-one. Once 2 has been mapped then 3 now has only one choi-$-c e$.

So total we have $3 \cdot 2 \cdot 1=3!=6$ choices for a function on $\{1,2,3\}$ to be bijection and so S_{3} has 6 elements.

Remark:- In fact, S_{n} has n ! elements. Now the question is that what are the elements of S_{3} ?

One obvious element is the function $\epsilon:\{1,2,3\} \longrightarrow\{1,2,3\{$ given by $\epsilon(1)=1, \quad \in(2)=2$ and $\epsilon(3)=3$.

Another way to write this function o

$$
\epsilon=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right]
$$

where the top row should be conside--red as elements of B in the domain and the bottom row is the co-domain. so the above array is telling us that $1 \rightarrow 1,2 \rightarrow 2$ and $3 \longrightarrow 3$

Let's consider another element of S_{3} $\alpha: B \rightarrow B, \alpha(1)=2, \alpha(2)=3$ and $\alpha(3)=1$ which in the array form can be written as

$$
\alpha=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right]
$$

Now in $\alpha \in S_{3}$ and S_{3} is a group then $\alpha \cdot \alpha$ must be in S_{3}.
Since the group operation is the compo-- sitiar of functions $=0$

$$
\alpha^{2}=\alpha \cdot \alpha=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right]
$$

What about α^{3} ? $\quad \alpha^{3}=\alpha^{2} \cdot \alpha=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]$ which is the same as \in and so it's not a new element.

Another element of S_{3} is

$$
\beta=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right]
$$

Again $\alpha \cdot \beta \in S_{3}$ because S_{3} is a group.
and for fincling $\alpha \cdot \beta$ we recall that in the composition of two functions, we move from right to left, i.e, first apply β then α. So

$$
\alpha \cdot \beta=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right]
$$

which is a new element.
finally $\quad \beta . \alpha=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right]$ which is again a new element and so we got all the elements of the group and so

$$
S_{3}=\left\{\epsilon, \alpha, \beta, \alpha^{2}, \alpha \beta, \beta \cdot \alpha\right\}
$$

Observe that $\alpha \cdot \beta \neq \beta . \alpha$ so S_{3} is non-abelian.

Remark One can ask that after finding β, we did $\alpha \cdot \beta$. Why clidn't we do $\alpha^{2} \cdot \beta$?

Exercise Check that $\alpha^{2} \cdot \beta=\beta . \alpha$.

Before moving on, let's make a definition :-
Definition (Order of a group)
Let (G, \cdot) be a group. The order of the group G, denoted by $|G|$, is the number of elements in the group. e.g. order of $(\mathbb{Z},+)$ i infinite.

$$
\begin{gathered}
\left|D_{4}\right|=8 \\
\left|S_{3}\right|=6
\end{gathered}
$$

New groups from old - Direct product of groups
Given two groups G and H, we can form a new group called the direct product
(or external direct product).

Definition Let $(G, 0)$ and $(H, *)$ be groups. The direct product of G and H is defined as the group $(G \times H, \cdot)$ where

$$
G \times H=\{(g, h) \mid g \in G, h \in H\}
$$

and $\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right)=\left(g_{1} \circ g_{2}, h_{1} * h_{2}\right)$ F $g_{1}, g_{2} \in G$ and $h_{1}, h_{2} \in H$.

Exercise Prove that $(G \times H, \circ)$ is a group.

